Supervised learning: classification

Fons van der Sommen

Eindhoven university of technology

(Part of 5XSAO: Introduction to Medical Imaging)

Supervised learning: example (1/5)

* Separate lemons from oranges

TU/e

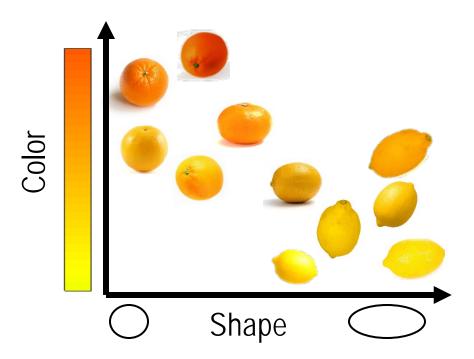
Color: orange Shape: sphere Ø: ± 8 cm Weigth: ±0.1 kg

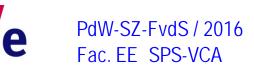
Color: yellow Shape: elipsoid Ø: ± 8 cm Weigth: ±0.1 kg

* Use "color" and "shape" as features

Supervised learning: example (2/5)

* Separate lemons from oranges





TU

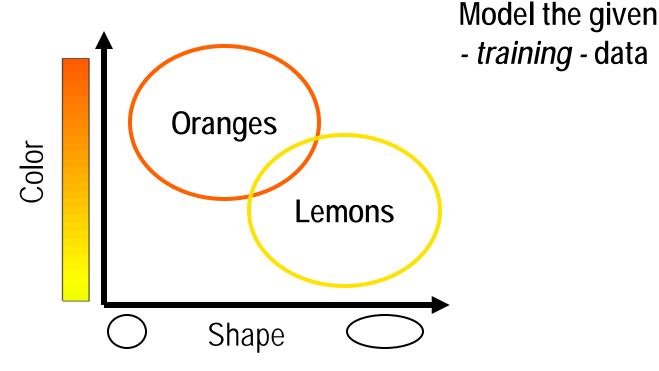
Supervised learning: example (3/5)

* Separate lemons from oranges

PdW-SZ-FvdS / 2016

Fac FF SPS-VCA

e



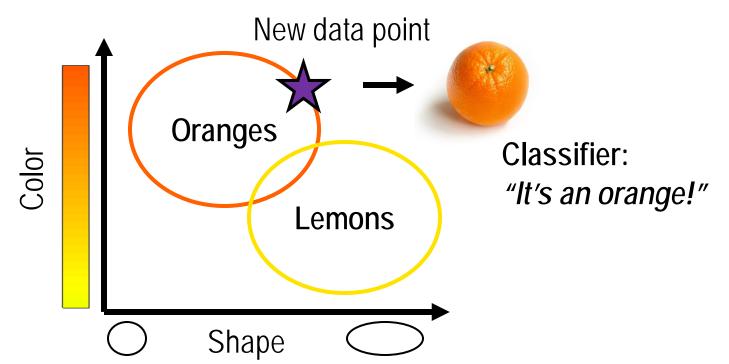
Introduction to Med. Imaging /

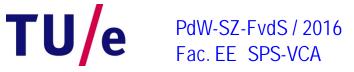
5XSA0 / Module 6 Classification

VCA

Supervised learning: example (4/5)

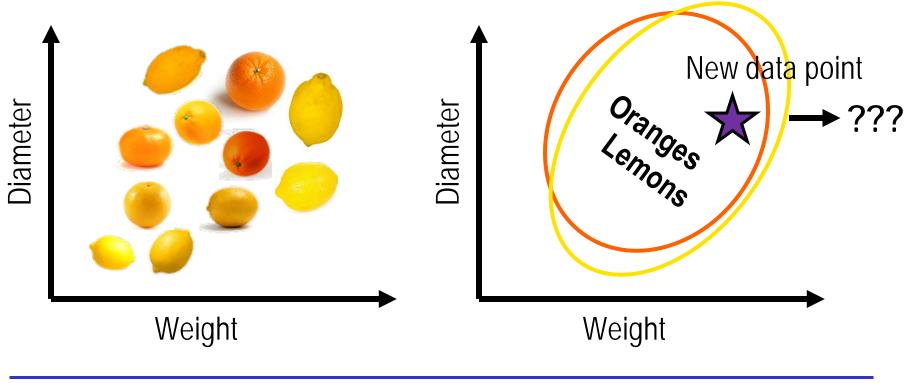
* Separate lemons from oranges





Supervised learning: example (5/5)

* What if we had chosen the wrong features?



Supervised learning

<u>Summary</u>

TU

- * Choose distinctive features
- * Make a model based on labeled data (a.k.a. supervised learning)
- * Use the *learned* model to predict the class of new, unseen data points

Models for classification

- * Support Vector Machine (SVM)
- * k Nearest Neighbours (k-NN)
- * Random Forests
- * Boosting

*

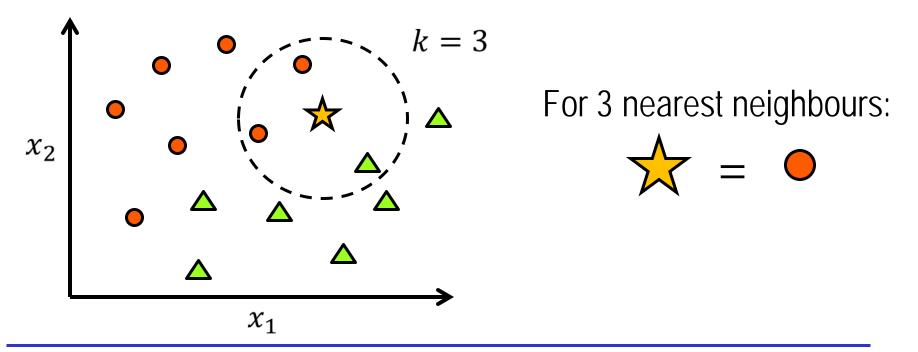
. . .

TU/e

* Neural Networks

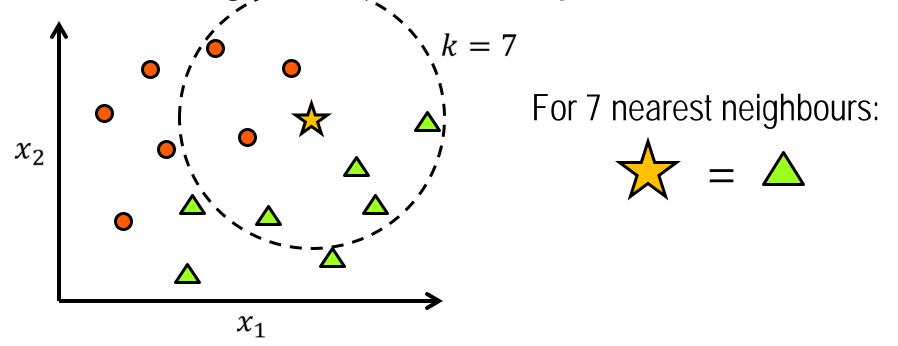
k Nearest Neighbours (1)

* Simple concept: look at the class of the k closest neighbours in feature space



k Nearest Neighbours (2)

* Simple concept: look at the class of the k closest neighbours in feature space



k Nearest Neighbours (3)

* Type of instance based learning

- A.k.a. memory based learning
- New instance compared to training instances that are stored in memory: no explicit modelling
- Very memory-heavy classification method!

* Two important parameters

- Number of neighbours k
- Distance metric

k Nearest Neighbours (4)

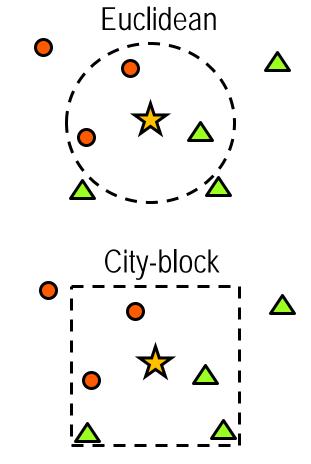
* Distance metrics

– Euclidean distance (L²-norm)

$$\mathbf{d}(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{D} (p_i - q_i)^2}$$

$$\mathbf{d}(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{D} |p_i - q_i|$$

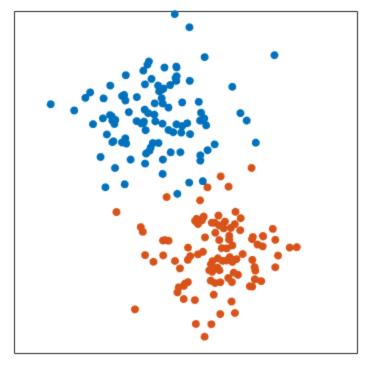
e



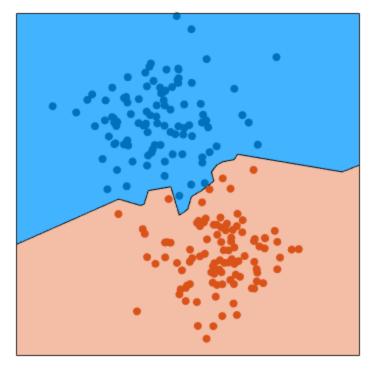
PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

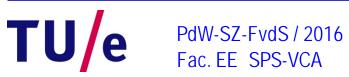
k Nearest Neighbours # neigbours & generalization (1)

2 classes in feature space



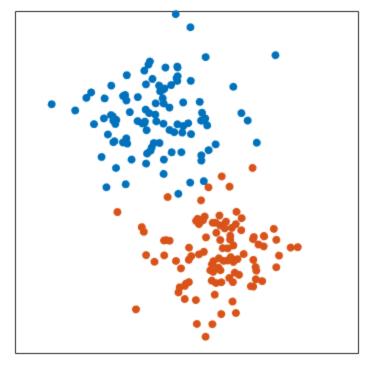
k-NN decision for k=1



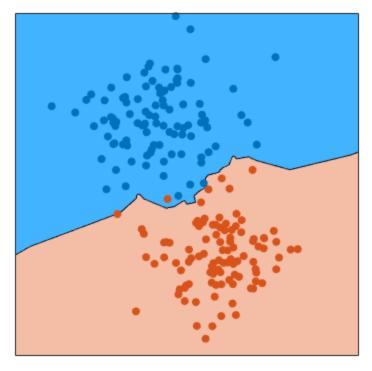


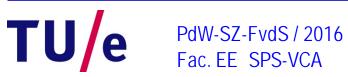
k Nearest Neighbours # neigbours & generalization (2)

2 classes in feature space



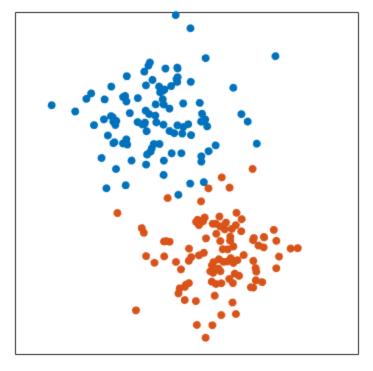
k-NN decision for k=3



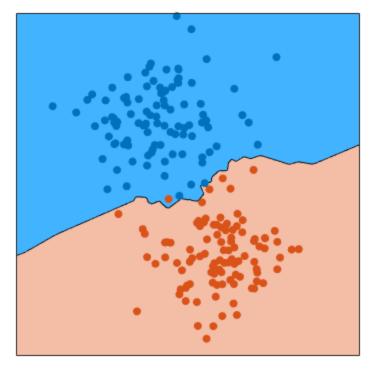


k Nearest Neighbours # neigbours & generalization (3)

2 classes in feature space

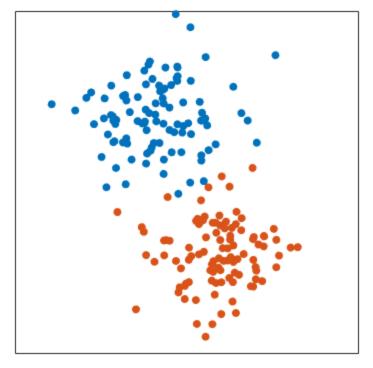


k-NN decision for k=5

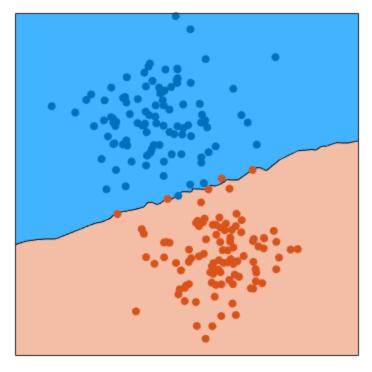


k Nearest Neighbours # neigbours & generalization (4)

2 classes in feature space

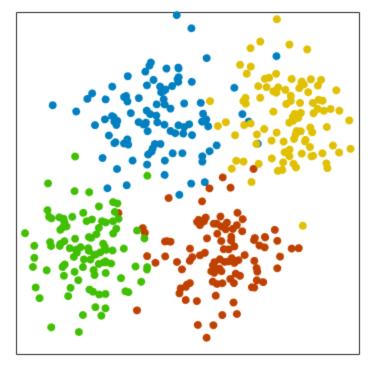


k-NN decision for k=10

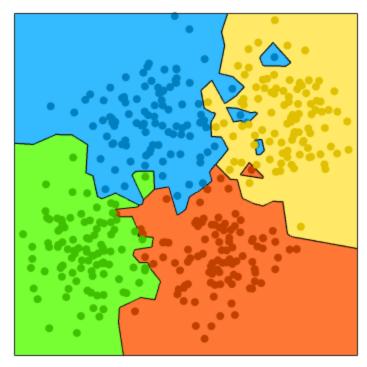


k Nearest Neighbours # neigbours & generalization (5)

4 classes in feature space



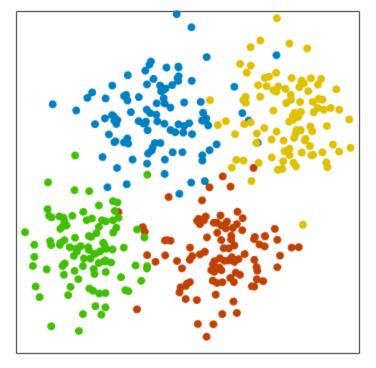
k-NN decision for k=1



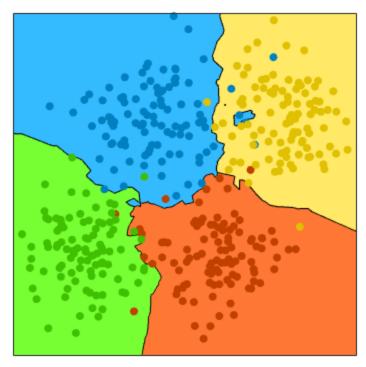
TU/e PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

k Nearest Neighbours # neigbours & generalization (6)

4 classes in feature space



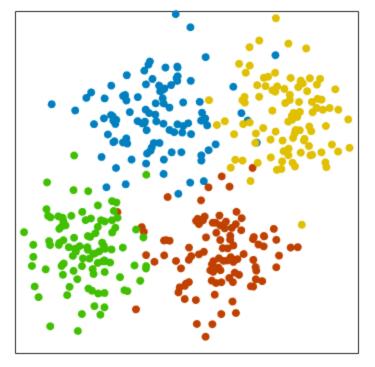
k-NN decision for k=3



TU/e PdW-SZ-FvdS/2016 Fac. EE SPS-VCA

k Nearest Neighbours # neigbours & generalization (7)

4 classes in feature space



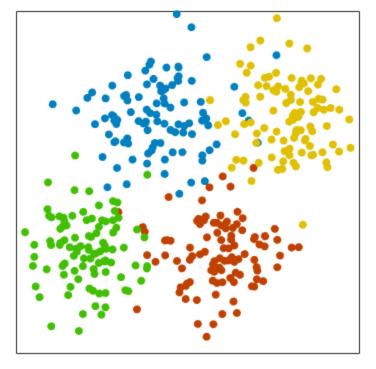
k-NN decision for k=10



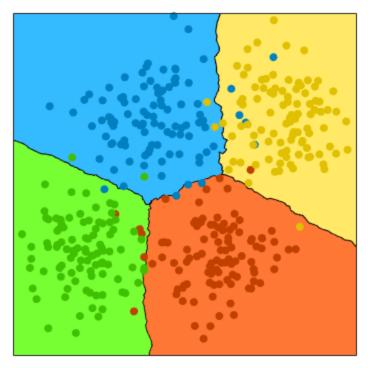
TU/e PdW-SZ-FvdS/2016 Fac. EE SPS-VCA

k Nearest Neighbours # neigbours & generalization (8)

4 classes in feature space



k-NN decision for k=25



k Nearest Neighbours

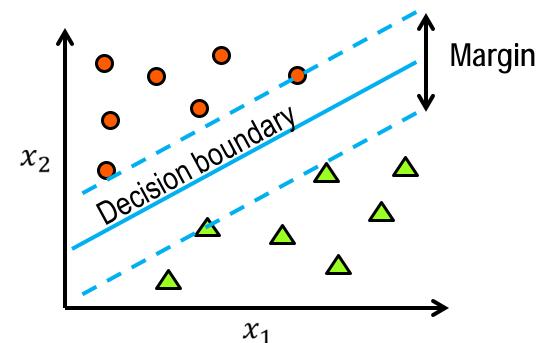
* Summary

- Instance learning: no explicit modeling
- Memory heavy: all training samples are stored
- Two important parameters
 - 1. Number of nearest neighbours k
 - 2. Distance metric d
- Different parameters choices can lead to different results!
- Higher k leads to better generalization, but also makes classification of a new sample a lot slower!

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

Support Vector Machine (SVM) (1)

* Find a hyperplane that separates the classes with a maximum margin



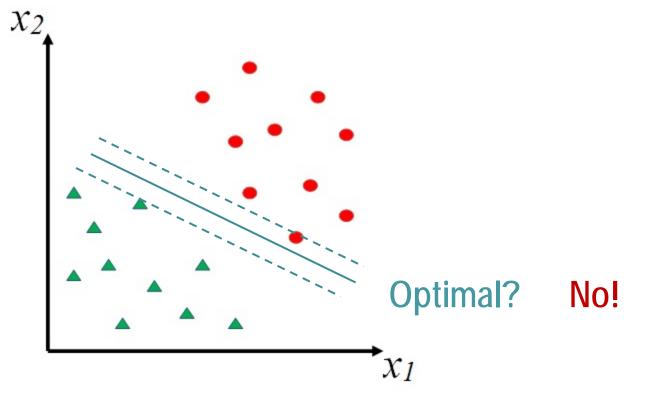
Support Vector Machine (SVM) (2)

* Based on emperical risk minimization (1960s)

- Non-linearity added in 1992 (Boser, Guyon & Vapnik)
- Soft-margin SVM introduced in 1995 (Cortes & Vapnik)
- * Has become very popular since then
 - Easy to use, a lot of open libraries available
 - Fast learning and very fast classification
 - Good generalization properties

Support Vector Machine (SVM) (3)

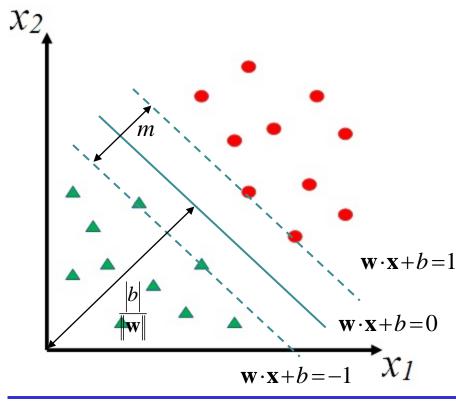
* How to find the optimal hyperplane?





Support Vector Machine (SVM) (4)

* How to find the optimal hyperplane?



Width of the margin:

$$m = \frac{|b|+1}{\|\mathbf{w}\|} - \frac{|b|-1}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

Maximize margin:

 $\begin{array}{ll} \max_{\mathbf{w},b} & \frac{2}{\|\mathbf{w}\|}\\ \text{subject to} & \mathbf{w}^T x_i + b \begin{cases} \geq 1 & y_i = 1\\ \leq -1 & y_i = -1 \end{cases} \end{cases}$

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

TU

e

Support Vector Machine (SVM) (5)

* We can rewrite this to

 $\min_{\mathbf{w},b} \|\mathbf{w}\|$
subject to $y_i(\mathbf{w}^T x_i + b) \ge 1$

* Formulate as a Quadratic Programming problem:

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to $y_i(\mathbf{w}^T x_i + b) \ge 1$

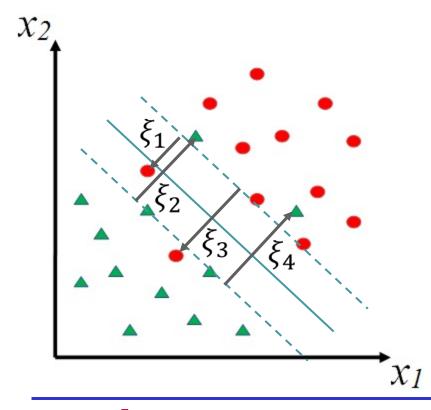
Efficient methods available to solve this problem!

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

TU/e

Support Vector Machine (SVM) (6)

* The data is usually not linearly separable...



Introduce slack variables ξ_i

Put a cost *C* on crossing the margin, so the optimization problem becomes:

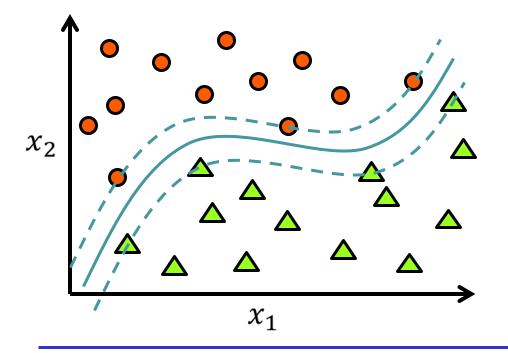
$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \xi_i$$

subject to $y_i(\mathbf{w}^T + b) \ge 1$

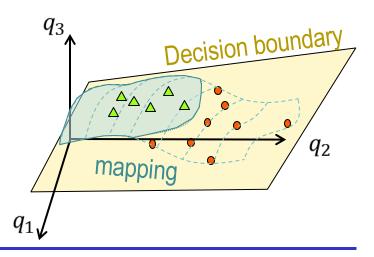
PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

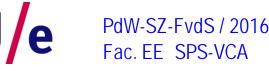
Support Vector Machine (SVM) (7)

* A more complex extension: non-linear SVMs



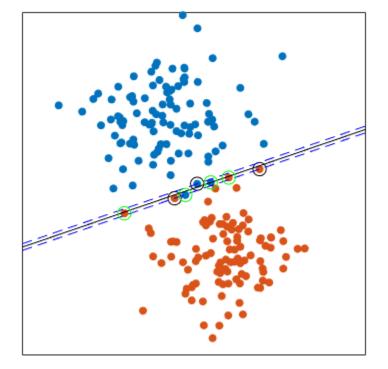
Basic idea: map the data to a higher-dimensional space, in which we can apply a linear SVM



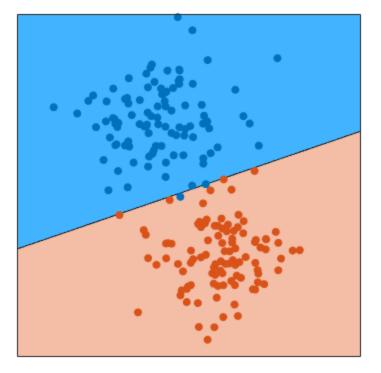


Support Vector Machine (SVM) Cost parameter & generalization (1)

Optimal hyperplane for C=100

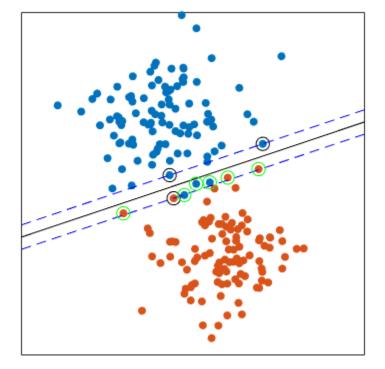


SVM decision for C=100

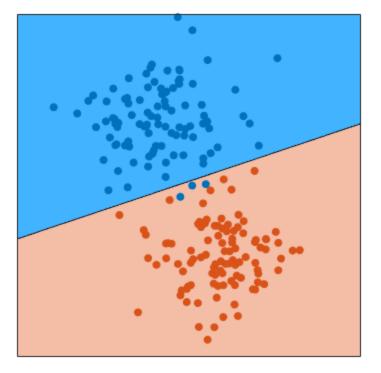


Support Vector Machine (SVM) Cost parameter & generalization (2)

Optimal hyperplane for C=10

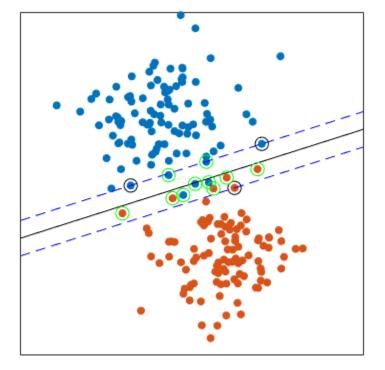


SVM decision for C=10

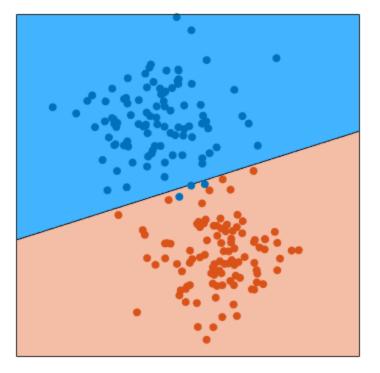


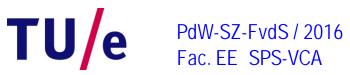
Support Vector Machine (SVM) Cost parameter & generalization (3)

Optimal hyperplane for C=1



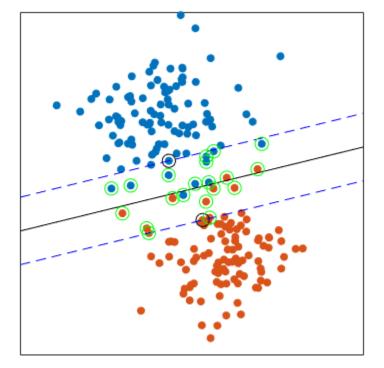
SVM decision for C=1



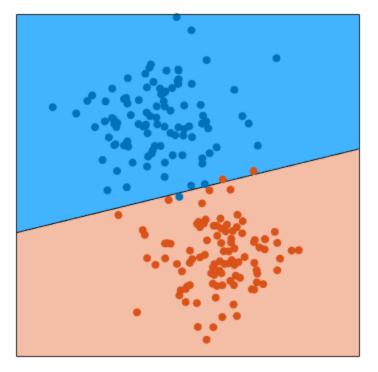


Support Vector Machine (SVM) Cost parameter & generalization (4)

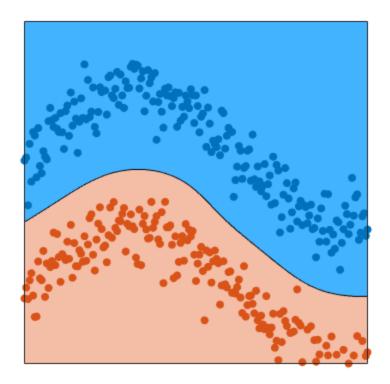
Optimal hyperplane for C=0.1

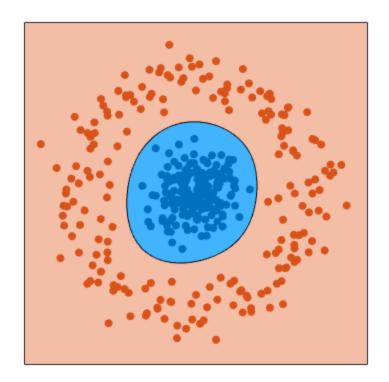


SVM decision for C=0.1



Support Vector Machine (SVM) Non-linear SVM examples





Support Vector Machine (SVM)

* Summary

- Fast and efficient method for <u>binary</u> classification
- Splits the classes based on maximizing the margin
- Optimal hyperplane can be computed using Quadratic Programming
- Cost-parameter for points crossing the margin
- Non-linear SVM can also handle more complex class distributions by mapping the data to another space

Random Forest (1)

- * Build decision trees on subsets of the data
- * Let the trees vote on the class of a new sample

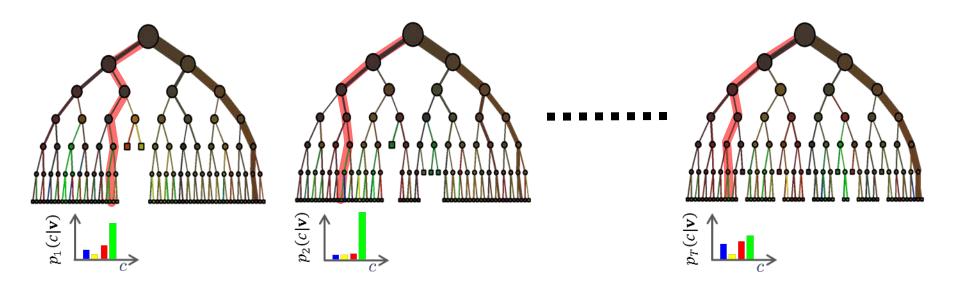


Image from a tutorial of Antonio Criminisi download at: http://research.microsoft.com/en-us/projects/decisionforests/

TU/

Random Forest (2)

- * Robustness through randomness
 - A random subset is used to train each tree
 - For training a tree, each node receives a random set of split options
- * Intrinsically probabilistic output
 - Measure of confidence / uncertainty
- * Automatic feature selection
- * Naturally multi-class
- * Runs efficiently trees can run in parallel

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

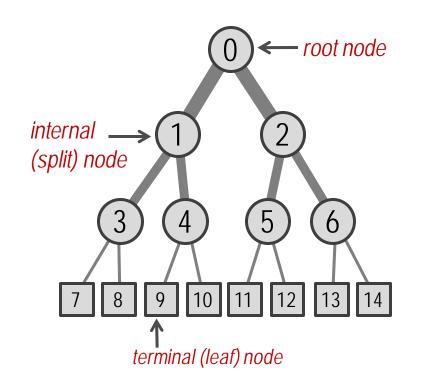
Random Forest Decision trees (1)

A forest consists of trees

<u>A general tree structure</u>

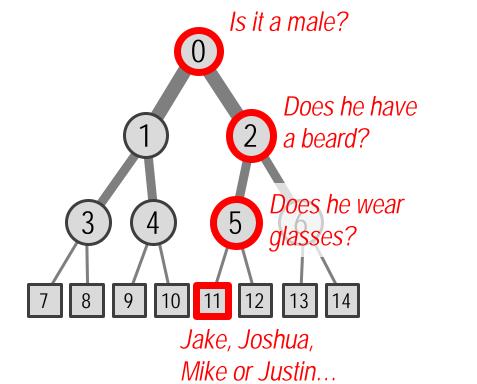
- * Start at the root node
- True/false question at each split node
- * Stop when a leaf node is reached: prediction

TU/e



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

Random Forests Decision trees (2)



Example: GUESS WHO*

*Credits to Mark Janse

Randomized Node Optimization (RNO)

Random Forests Decision trees (3)

Bagging

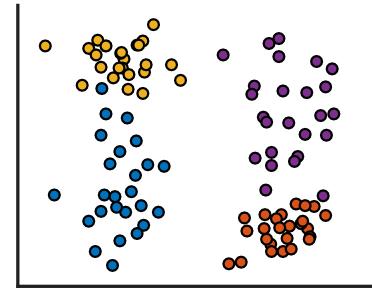
* How to train a decision tree?

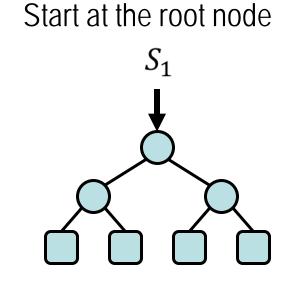
- Start with a subset of all the training data at the root node
- From a set of randomly chosen split options *θ*, select the one that maximizes some split metric (e.g. information gain)
- Repeat this for all the nodes and stop growing a certain branch untill one of the following two criteria holds:
 - A pre-defined tree depth D is reached (# nodes of a branch)
 - All trianing samples in the node are from the same class

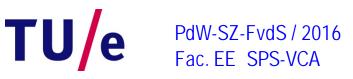
Random Forests How to grow a tree? (1)

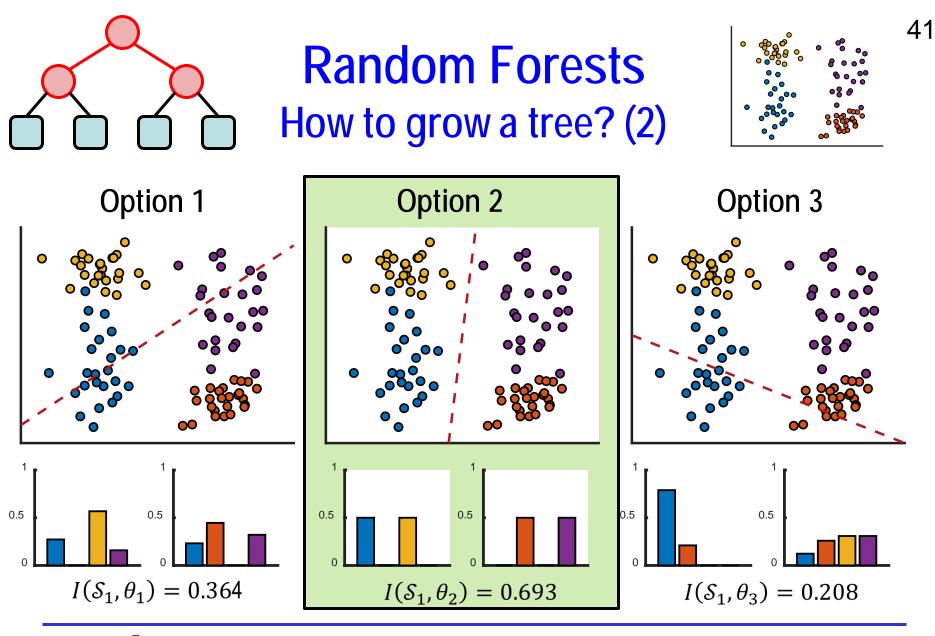
* Let's grow a tree with depth D = 2:

Subset S_1 of all availabe data S





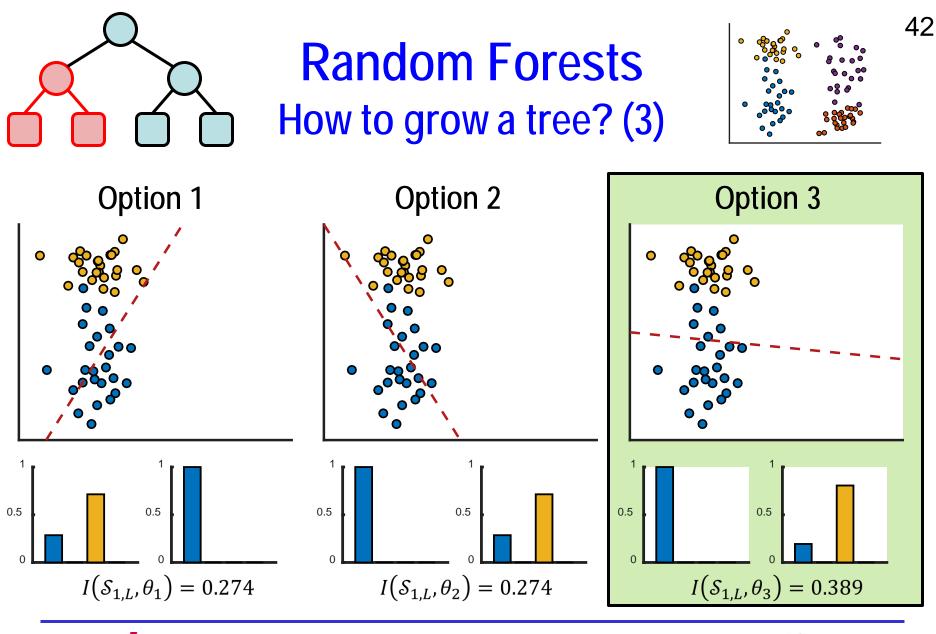




PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

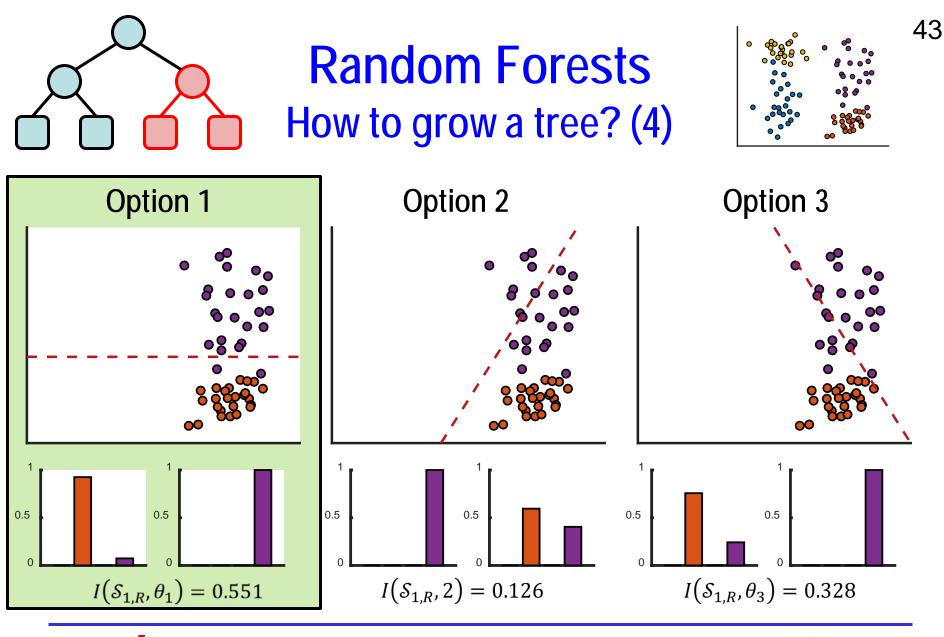
TU/

e



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

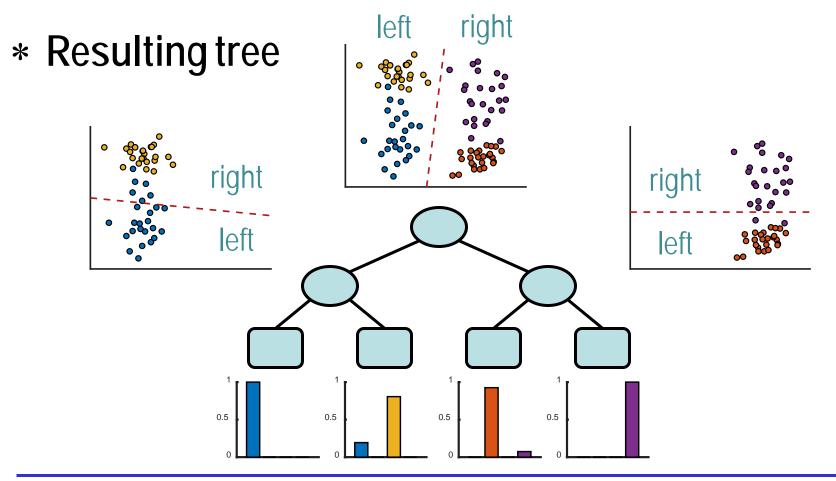
TU/e



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

TU/e

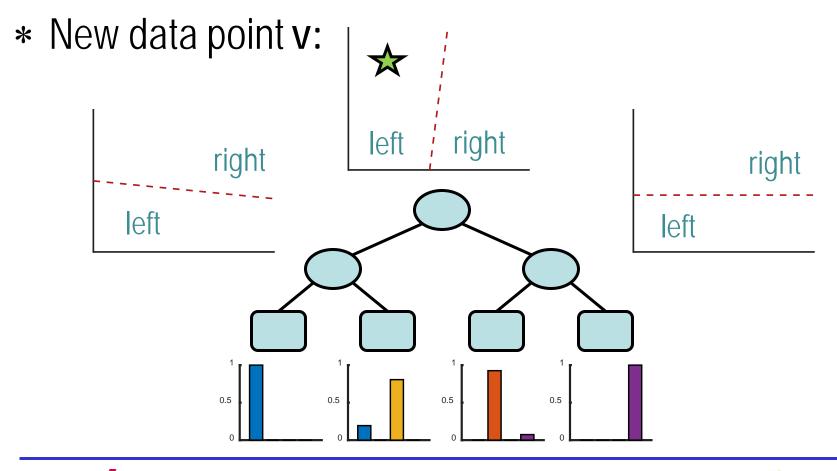
Random Forests How to grow a tree? (5)



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

TU/e

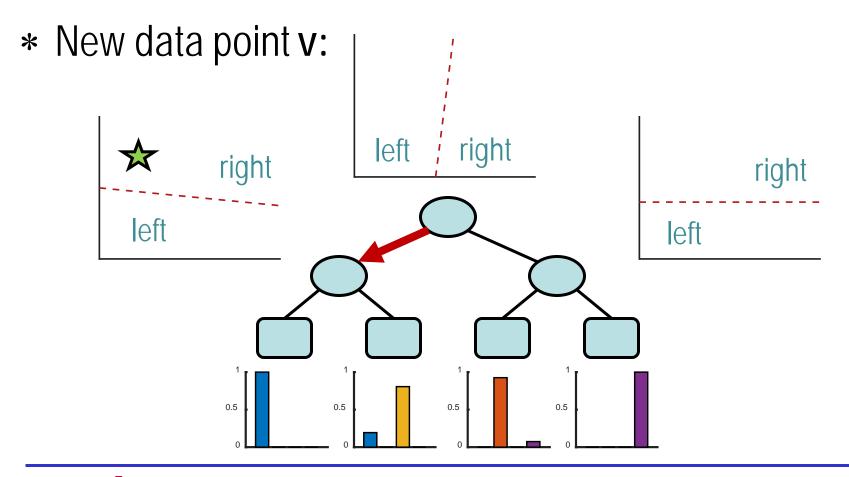
Random Forests Classify a new data point (1)



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

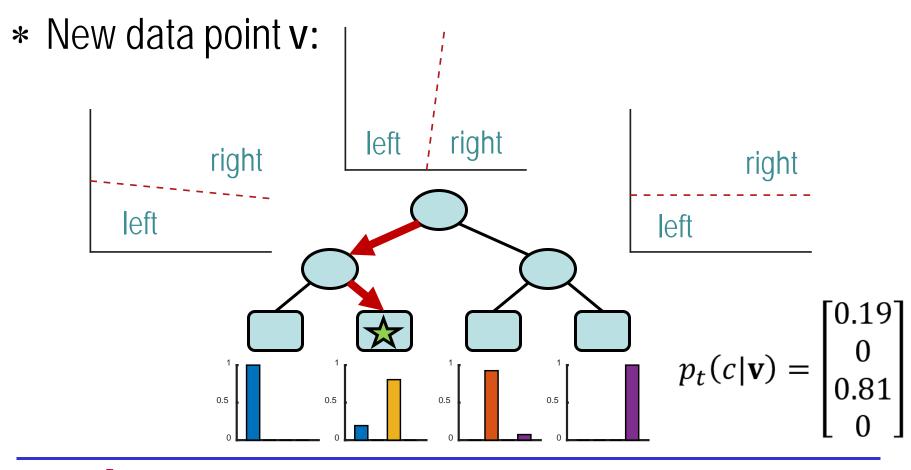
TU/e

Random Forests Classify a new data point (2)



TU/e PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

Random Forests Classify a new data point (3)



TU/e PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

Random Forests Classification examples

* How to combine tree output?

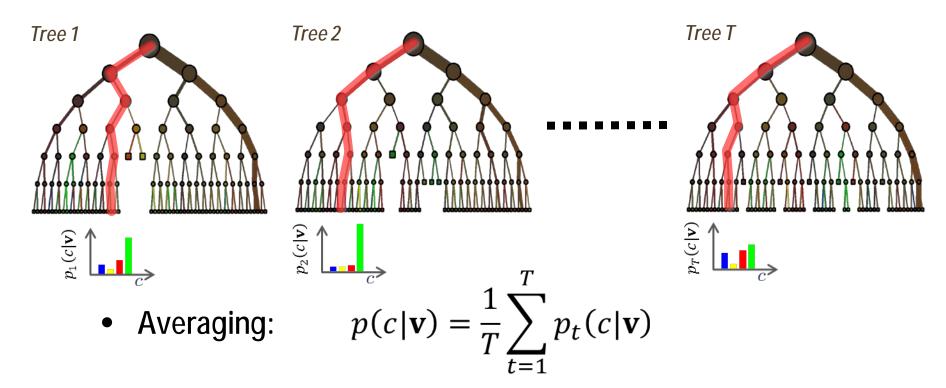


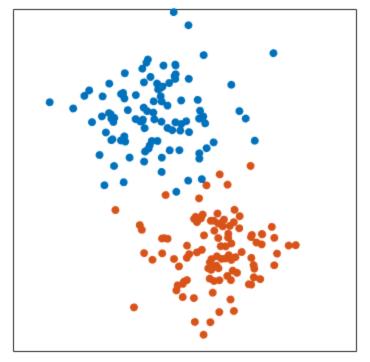
Image from a tutorial of Antonio Criminisi download at: <u>http://research.microsoft.com/en-us/projects/decisionforests/</u>

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

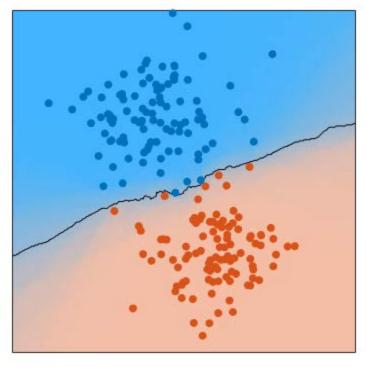
TU/

Random Forests Classification example (1)

2 classes in feature space



Random forest decision



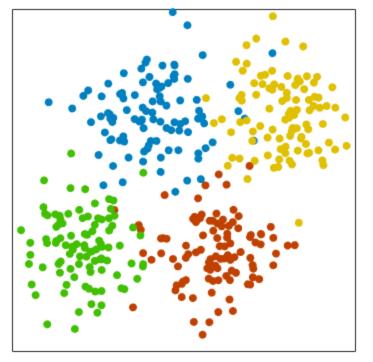
N = 100 trees, max number of nodes = 5, *#* candidate splits per node = 3

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

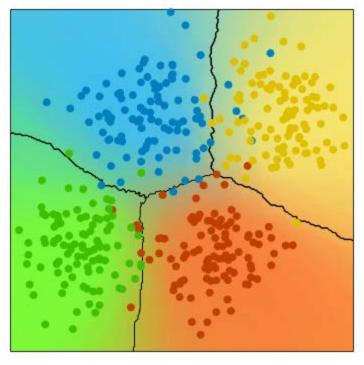
TU/e

Random Forests Classification example (2)

4 classes in feature space



Random forest decision



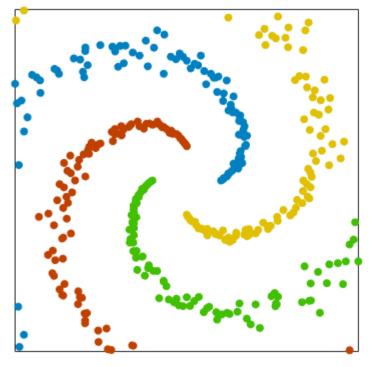
N = 100 trees, max number of nodes = 4, # candidate splits per node = 3

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

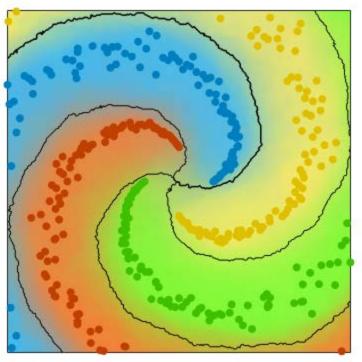
TU/e

Random Forests Classification example (3)

4 classes in feature space



Random forest decision



N = 100 trees, max number of nodes = 10, # candidate splits per node = 8

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

TU/e

Random Forests

* Summary

TU

- Good generalization due to randomness model
 - Bagging
 - Each tree is trained on a randomly selected subset of the data
 - Randomized Node Optimization (RNO)
 - Each node receives a randomly selected subset of all possible split options.
- Multi-class classification with probablistic output
- Suboptimal splits lead to a robust model
- Result depends heavily on the forest parameters

* So, now we have model, how good is it?

- We have labeled data (ground truth), so we can validate!

* Model validation:

- Separate sets for training and testing the model
 - Train the model using the training set
 - Use the test set to evaluate the performance
- Compute figures of merit, which indicate the performance
- What is a good performance metric? And how should we split the data?

* Some popular figures of merit:

- Accuracy (#TP + #TN) / (#TP + #FN + #FP)
- Sensitivitiy (#TP) / (#TP + #FN) a.k.a. True Positive Rate
- Specificity (#TN) / (#TN + #FP) a.k.a. True Negative Rate

Where

True Positive (TP): True Negative (TN): False Positive (FP): False Negative (FN): positive sample classified as positive negative sample classified as negative negative sample classified as positive positive sample classified as negative

Introduction to Med. Imaging / **5XSA0 / Module 6 Classification**

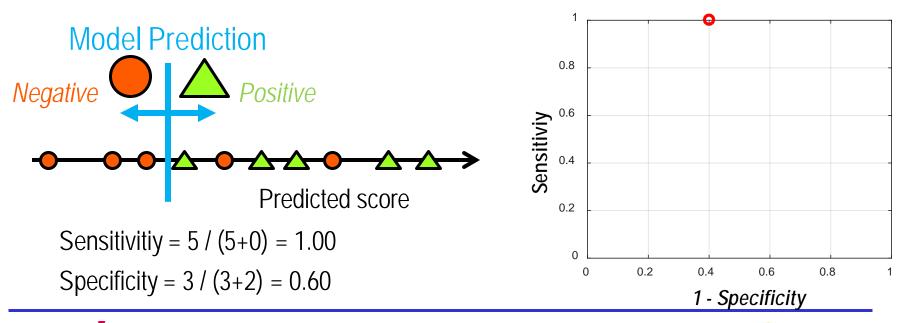
Number of

samples

- * Receiver Operating Characteristic (ROC)
 - Sensitivity / specificity give the performance for just one possible setting (i.e. decition threshold) of the model
 - We can vary this threshold and recompute these performance metrics
 - This yields a curve of possible combinations of sensitivity and specificity, called the ROC curve
 - Generally true: ↑ sensitivity ↓ specificity and vice versa

* How to compute the ROC curve?

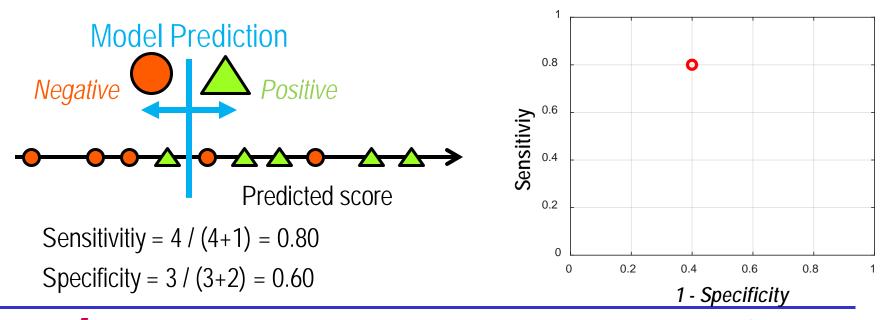
- For each sample we have a predicted class and a score
- Sort the samples according to score and move the threshold



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

* How to compute the ROC curve?

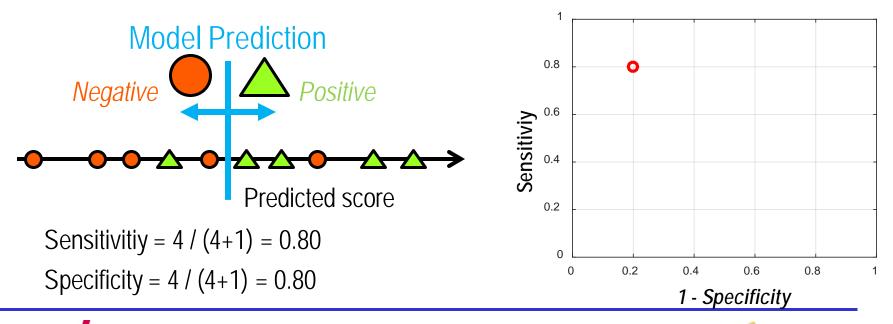
- For each sample we have a predicted class and a score
- Sort the samples according to score and move the threshold



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

* How to compute the ROC curve?

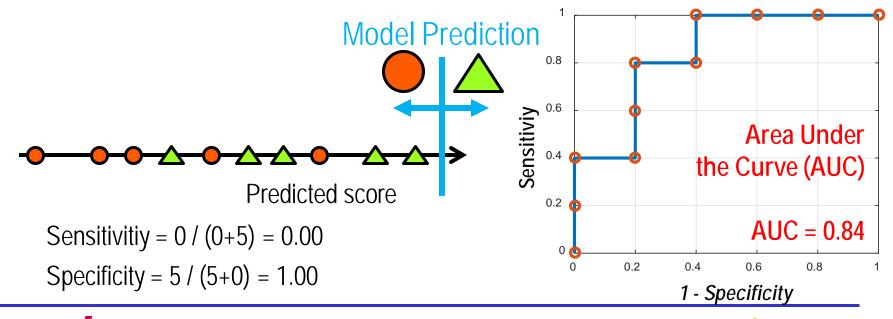
- For each sample we have a predicted class and a score
- Sort the samples according to score and move the threshold



PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

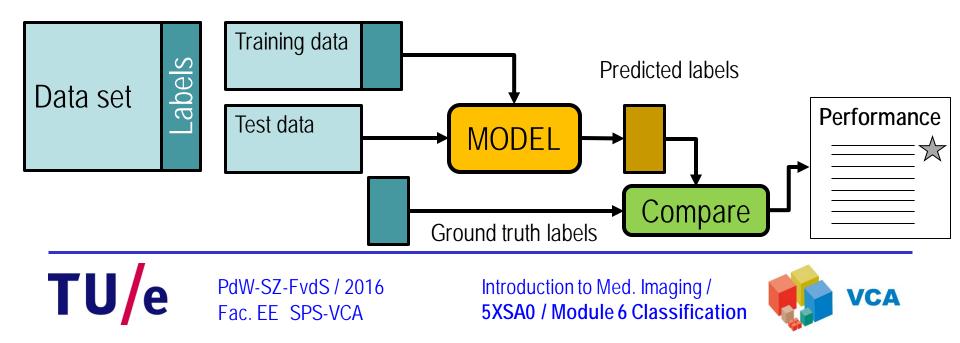
* How to compute the ROC curve?

- For each sample we have a predicted class and a score
- Sort the samples according to score and move the threshold

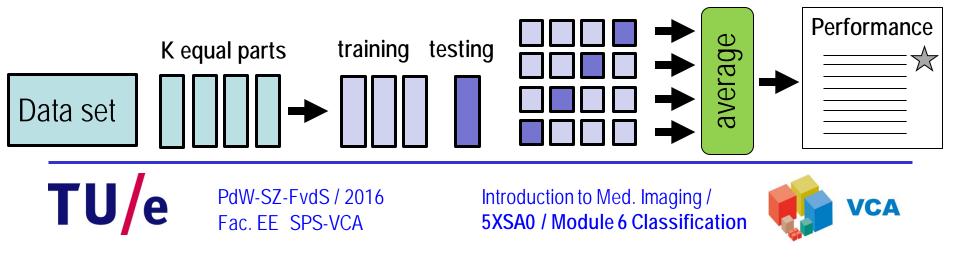


PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

- * Large data set: randomly sample half the samples for training and half for testing
 - Training and testing is time consuming for large datasets
 - The test set is probably a good reflection of the training set



- * How should we split the data?
 - Different choices might lead to different results...
- * K-fold cross-validation
 - Split the data in K equally sized parts
 - Use K-1 parts for training and use the left-out part of the data for testing, repeat this for each part and average:



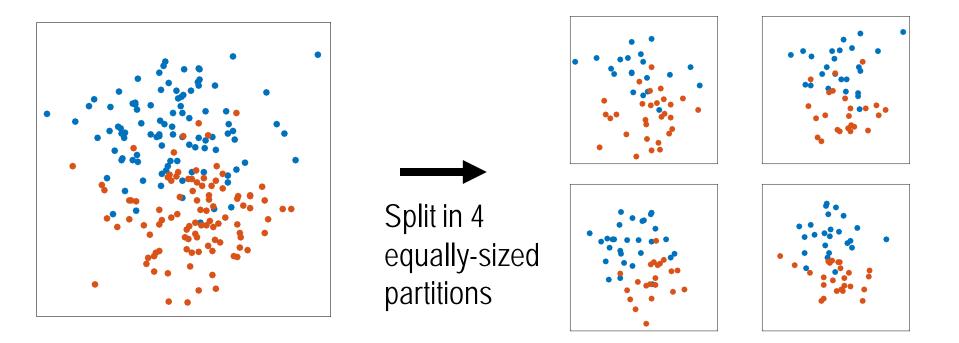
* Leave-One-Out Cross-Validation

- Leave one sample out of the complete set and use the remaining set to train the model
- Test the model on the left-out sample
- Repeat this for all samples.

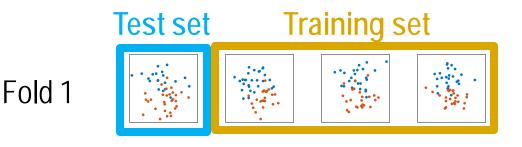
* Best performance indication for small data set

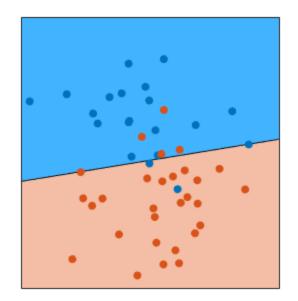
 You want to use as much of the little data you have for training the model

Performance evaluation EXAMPLE: 4-fold cross validation (1)



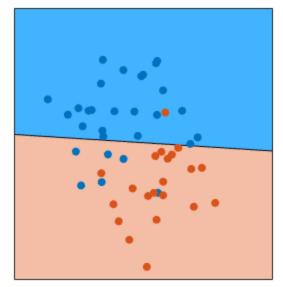
Performance evaluation EXAMPLE: 4-fold cross validation (2)



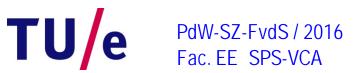


Fold 1: Accuracy = 0.86

Performance evaluation EXAMPLE: 4-fold cross validation (3)



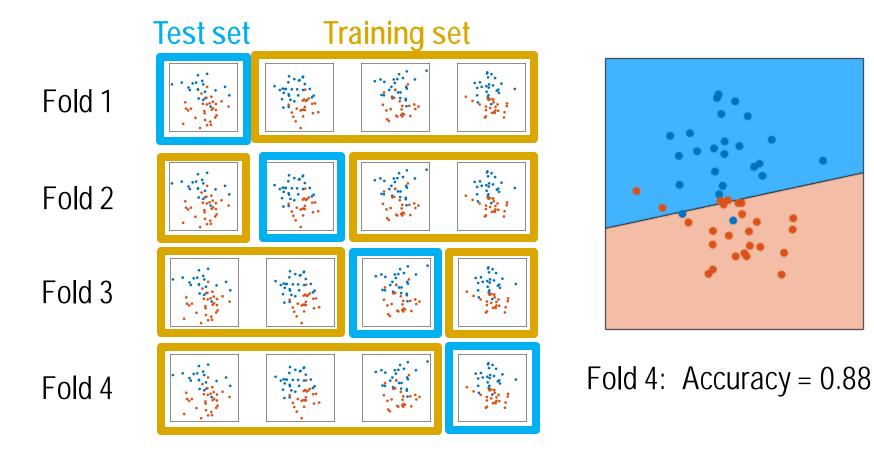
Fold 2: Accuracy = 0.86

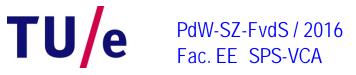


Performance evaluation EXAMPLE: 4-fold cross validation (4)

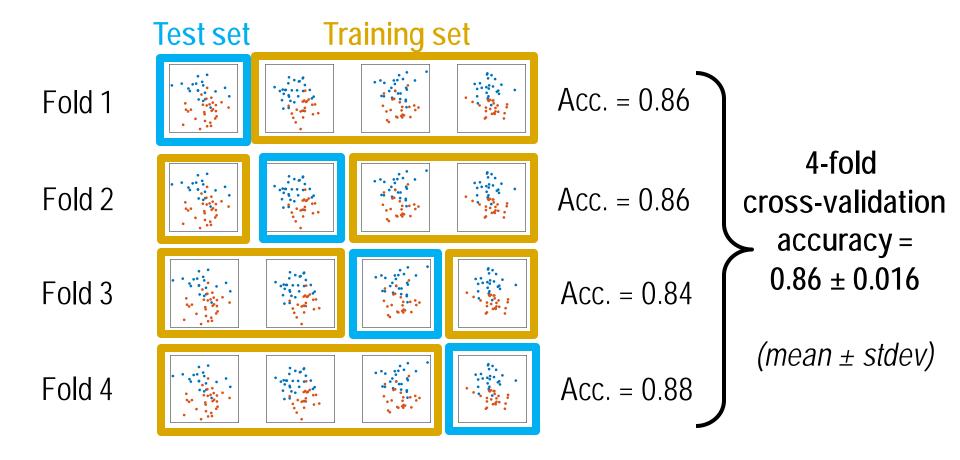
Fold 3: Accuracy = 0.84

Performance evaluation EXAMPLE: 4-fold cross validation (5)



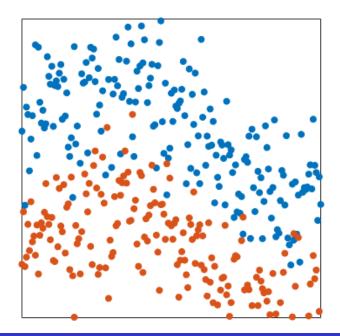


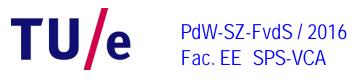
Performance evaluation EXAMPLE: 4-fold cross validation (6)



TU/e PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

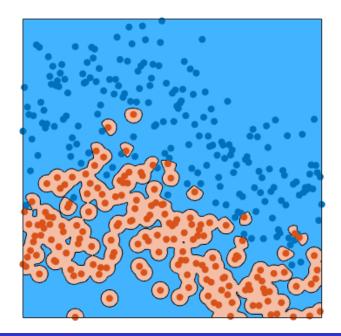
- * Why don't we evaluate on the training set?
 - Example:





* Why don't we evaluate on the training set?

- Example:



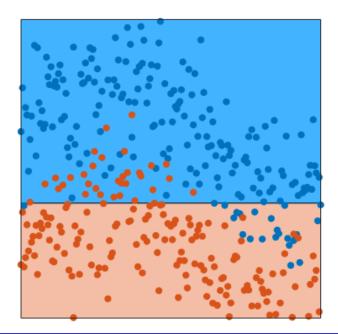
Is this a good classifier?

- No errors on the training set!!!
- 100% accuracy

NO!

- Very poor generalization
- On new, identically distributed data:
 - 81% accuracy...
- Overfitting!

- * Why don't we evaluate on the training set?
 - Example:



Is this a good classifier?

- Many errors on the training set...
- 86% accuracy

NO!

- Model complexity too low!
 - Underfitting!

- On new, identically distributed data:
 - 84% accuracy... (≈ train acc. !)

- * Why don't we evaluate on the training set?
 - Example:

TU/e



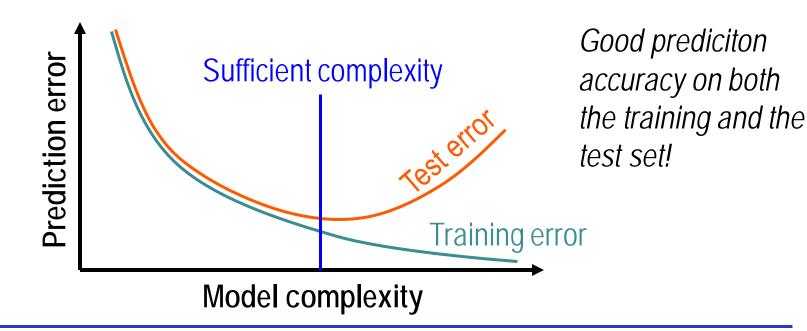
Is this a good classifier?

- Accuracy on trianing set: 94% ←
- Accuracy on test set: 95%
- Approximately equal train and test error
 - Good generalization!

PdW-SZ-FvdS / 2016 Fac. EE SPS-VCA

* Model complexity: what is a good model?

- A model with good generalization!

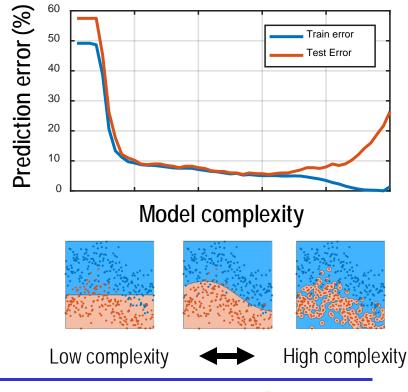


* Model complexity: what is a good model?

- Example:

TU/e

- Non-linear SVM
- Fixed cost parameter C
- Complexity increases with reducing the size of the kernel scale (flexibility)
- 10-fold cross validation to estimate the test error
- Validate on training set for computing the train error



* Summary:

- In supervised learning the "ground truth" is available, so we can evaluate the prediction performance of the model.
- Split the data in two sets (training set and test set).
- Use figures of merit for measuring the performance:
 - Accuracy, Sensitivity, Specificity, AUC,...
- Use K-fold cross-validation for reliable evaluation.
- Increasing the model complexity may lead to overfitting!
 - Poor generalization: Low training set error, high test set error.

